其他
BIB|Mol2Context-vec:从情境感知中学习分子表征用于药物发现
今天给大家介绍的是Briefings in Bioinformatics上的文章 "Mol2Context-vec: learning molecular representation from context awareness for drug discovery"。
1.研究背景
2.方法
3.实验和讨论
预训练化合物数据集
4.结论
参考资料
Lv Q, Chen G, Zhao L, et al. Mol2Context-vec: learning molecular representation from context awareness for drug discovery[J]. Briefings in Bioinformatics,2021.,bbab317, https://doi.org/10.1093/bib/bbab317
----------- End -----------
感兴趣的读者,可以添加小邦微信(zhiyaobang2020)加入读者实名讨论微信群。添加时请主动注明姓名-企业-职位/岗位 或姓名-学校-职务/研究方向。
浙江工业大学智能制药研究院段宏亮教授:AI制药的现状、技术与挑战
BRIEF BIOINFORM|基于BAN的策略,来改善基于SMILES字符串的分子表征学习
JCIM|结合AI与Docking的基于结构的分子从头生成模型
JCIM|XGraphBoost:基于图神经网络提取特征的一种更好的分子特性预测模型
CHEM SCI|基于约束贝叶斯优化,采用变分自编码器进行自动化学设计
Nat Commun|增强的用于直接合成和单步逆合成的NLP的Transfermer模型
Nat Commun|AI结合基因表达特征,从头生成类苗头化合物CHEM SCI|分子Transformer模型预测酶促反应
Transformer-CNN:用于 QSAR 建模和解释的先进工具
基于文本表示推断化学反应的实验步骤
基于AI的连续流反馈系统加速化学反应开发
使用数据驱动的分子连续表示进行自动化学设计
图卷积神经网络用于解决小规模反应预测
数据增强和迁移学习策略解决小数据集化学反应预测问题
Drug Discov Today|药物研发风险地图